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Abstract—This paper describes a system that uses a global
workspace architecture implemented in spiking neurons to
control an avatar within the Unreal Tournament 2004 (UT2004)
computer game. This system is designed to display human-like
behaviour within UT2004, which provides a good environment
for comparing human and embodied AI behaviour without the
cost and difficulty of full humanoid robots. Using a biologically-
inspired approach, the architecture is loosely based on theories
about the high level control circuits in the brain, and it is
the first neural implementation of a global workspace that
is embodied in a dynamic real time environment. At its
current stage of development the system can navigate through
UT2004 and shoot opponents. We are currently completing the
implementation and testing in preparation for the human-like
bot competition at CIG 2011 in September.

I. INTRODUCTION

In 1950 Turing [1] proposed that an imitation game could
be used to answer the question of whether a machine can
think. In this game, a human judge engages in conversation
with a human and a machine and has to decide which
is human. The conversation is conducted over a text-only
channel, such as a computer console interface, to ensure
that the voice or body of the machine does not influence
the judge’s decision. While Turing posed his original test as
a way of answering the question of whether machines can
think, it is now more typically seen as a way of evaluating
the extent to which machines have achieved human-level
intelligence.

Since the Turing Test was proposed, there has been a
substantial amount of work on programs (chatterbots) that
attempt to pass the test by imitating the conversational
behaviour of humans. Many of these compete in the annual
Loebner Prize competition [2]. None of these programs
have passed the Turing Test so far, and they often rely
on conversational tricks for their apparent realism — for
example, parrying the interlocutor with a question when they
cannot process or understand the input.1

One reason why chatterbots have failed to pass the Turing
Test is that they are not embodied in the world. For example,
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1Attempts are still being made to develop systems with the full back-
ground knowledge that would be required to carry out human-like conver-
sation. The Cyc project [3] is developing a large database of common sense
knowledge and hopes to use logical reasoning on the facts stored in this
database to provide human-like reasoning. The Wolfram—Alpha system
[4] stores expert knowledge in a form that enables answers to arbitrary
questions in a domain to be computed. Wolfram [5] hypothesizes that all
natural processes can be viewed as computations, and claims that it may
eventually become possible to store and compute all possible knowledge in
this way.

a chatterbot can only respond to the question “Describe what
you see on your left” if the programmers of the chatterbot put
in the answer when they created the program. This lack of
embodiment also leads to a constant need for dissimulation
on the part of the chatterbot — when asked about its last
illness, it has to make something up. There is also an
emerging consensus within the AI community that many of
the things that we do with our bodies, such as learning a new
motor action, require and exhibit intelligence, and most of
AI research now focuses on intelligent actions in the world,
rather than conversation.

This emphasis on embodied artificial intelligence has led
to a number of variations on the Turing Test. In addition to
its bronze medal for human-like conversation, the Loebner
Prize also has a gold medal for a system that can imitate
the body and voice of a human. Harnad [6] has put forward
a T3 version of the Turing Test, in which a system has to
be indistinguishable from a human in its external behaviour
for a lifetime, and a T4 version of the Turing Test in
which a machine has to be indistinguishable in both external
and internal function. The key challenge with these more
advanced Turing tests is that it takes a tremendous amount of
effort to produce and control a convincing robot body with
similar degrees of freedom to the human body. Although
some progress has been made with the production of robots
that closely mimic the external appearance of humans [7],
and people are starting to build robots that are closely
modelled on the internal structure of the human body [8],
these robots are available to very few researchers and the
problems of controlling such robots in a human-like manner
are only just starting to be addressed.

A more realistic way of testing human-like intelligence
within an embodied setting has been proposed by Hingston
[9], who created the BotPrize [10] competition, which eval-
uates the ability of software programs (or bots) to provide
human-like control of avatars within the Unreal Tournament
2004 (UT2004) computer game environment. In this compe-
tition human judges play the game and rate the humanness
of other avatars, which might be controlled by a human or a
bot, with the most human-like bot winning the competition.
If a bot became indistinguishable from the human players,
then it might be considered to have human-level intelligence
within the UT2004 environment according to Turing [1]. This
type of work also has practical applications since it is more
challenging and rewarding to play computer games against
opponents that display human-like behaviour. Human-like
bot behaviour can also be applied to agent-based simulations
in economics and the social sciences, and it can be used in



film special effects to model the behaviour of crowds and
background characters in a natural manner.

This paper describes a system that we are developing to
produce human-like control of an avatar within the UT2004
environment. Our working hypothesis is that biologically-
inspired neural mechanisms could be an effective way of con-
structing a system with human-like behaviour. This approach
enables us to learn from the neural circuits that produce our
behaviour, and the models developed by biologically-inspired
robotics can contribute to the neuroscientific understanding
of the brain. The high level coordination and control of our
system is carried out using a global workspace architecture
[11], which is a popular theory about conscious control in
the brain that explains how a serial procession of conscious
states could be produced by interactions between multiple
parallel processes. Several attempts have been made to show
that the brain contains a global workspace [12], and a number
of brain-inspired models have been developed to explain
how a global workspace could be implemented in biolog-
ical neurons. Programmatic implementations of the global
workspace architecture have been used to control a naval
dispatching system [13], and it was used in a winning entry
of a previous BotPrize competition [14]. The key difference
between our system and previous neural and programmatic
implementations is that our system is both embodied in a
complex real time environment and based on biologically-
inspired circuits of spiking neurons, using CUDA hardware
acceleration on graphics cards to simulate networks with tens
of thousands of neurons and millions of connections in real
time.

The first part of this paper starts with background informa-
tion about the global workspace architecture and previous im-
plementations using neural networks and computer programs
(Section II). Next, the architecture of our system is described,
including the structure of the global workspace, the planned
and implemented parallel processors, and the mechanisms
for extracting sensory data from UT2004 and passing motor
data from the network to the avatar (Section III). Section IV
sets out the implementation of our system, and the paper
concludes with a discussion and plans for future work.

II. BACKGROUND

A. Global Workspace

Global workspace architecture was first put forward by
Baars [11] as a model of consciousness, and it is a way
in which separate processes working in parallel can be
coordinated to produce a single stream of control. The
basic idea is that a number of separate parallel processes
compete to place their information in the global workspace.
The winning information is then broadcast to all of the
other processes, which initiates another cycle of competition
and broadcast (Figure 1). Different types of processes are
specialized for different tasks, such as analyzing perceptual
information or carrying out actions, and processes can also
form coalitions that work towards a common goal. These
mechanisms enable global workspace theory to account for
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Fig. 1. Operation of the global workspace architecture. A) Three parallel
processes compete to place their information in the global workspace; B)
The process on the right wins and its information is copied into the global
workspace; C) Information in the global workspace is broadcast back to the
parallel processes and the cycle of competition and broadcast begins again.

the ability of consciousness to handle novel situations, its
serial procession of states and the transition of information
between consciousness and unconsciousness.

A number of neural models of global workspace ar-
chitecture have been built to investigate how it might be
implemented and operate in the brain. Dehaene et al. created
a neural simulation to study how a global workspace and
specialised processes interact during the Stroop task and
the attentional blink [15], [16], [17], and a related model
was constructed by Zylberberg et al. [18]. A brain-inspired
cognitive architecture based on global workspace theory
has been developed by Shanahan [19], which controlled a
simulated wheeled robot, and Shanahan [20] built a global
workspace model using simulated spiking neurons, which
showed how a biologically plausible implementation of the
global workspace architecture could move through a serial
progression of stable states. More recently Shanahan [21]
hypothesized that neural oscillation could be the mechanism
that implements a global workspace in the brain, and he is
developing neural and oscillator models of how this could
work.

The global workspace architecture has also proved to be
a successful way of controlling complex software systems.
Franklin’s [13] IDA naval dispatching system was created to
assign sailors to new billets at the end of their tour of duty.
This task involves natural language conversation, interaction
with databases, adherence to Navy policy and checks on
job requirements, costs and sailors’ job satisfaction. These
functions are carried out using a large number of codelets
that are specialised for different tasks and organised using
a global workspace architecture. A version of IDA that
is capable of learning (LIDA) has also been developed
[22]. Another successful software system based on a global
workspace architecture is CERA-CRANIUM [14], which
won the BotPrize in 2010 and the human-like bots competi-
tion at the 2011 IEEE Congress on Evolutionary Computa-
tion. CERA-CRANIUM uses two global workspaces: the first
receives simple percepts, aggregates them into more complex
percepts, and then passes them on to the second workspace.
In the second workspace the complex percepts are used to
generate mission percepts, which set the high level goals of
the system.

While programmatic implementations of global workspace



Fig. 2. Game environment. Left: map showing the data available to the bot (black) including other players (red), navigation points both in view (cyan)
and out of view (green), as well as wall locations gathered from ray tracing. Right: the in-game view showing an external view of the avatar.

architecture have been used to solve challenging problems in
real time, with the exception of [19], the neural implemen-
tations have typically been disembodied models that are de-
signed to show how a global workspace architecture might be
implemented in the brain. The aim of the research described
in this paper is to close the gap between the successful
programmatic implementations and the models that have
been developed in neuroscience: using spiking neurons to
implement a global workspace that controls a system within
a challenging real time environment. Addressing this type of
problem with a neural architecture will also help to clarify
how a global workspace might be implemented in the brain.

B. Spiking Neural Networks and Robotics

The work described in this paper takes place against the
background of previous research on the control of robots
using biologically-inspired neural networks. There has been a
substantial amount of research in this area, with a particularly
good example being the work of Krichmar et al. [23], who
used a network of 90,000 rate-based neuronal units and 1.4
million synaptic connections to control a wheeled robot.
This network included models of the visual system and
hippocampus, and used learning to solve the water maze
task. Work that has been done on the control of robots using
spiking neural networks includes a network with 18,000
neurons and 700,000 connections developed by Gamez [24],
which controlled the eye movements of a virtual robot and
used a learnt association between motor output and visual
input to reason about future actions. There is also the work
of Bouganis and Shanahan [25], who developed a spiking
network that autonomously learnt to control a robot arm
after an initial period of motor babbling, and there has been

some research on the evolution of spiking neural networks
to control robots [26]. As far as we are aware, none of
the previous work in this area has used a global workspace
implemented in spiking neurons to control a computer game
character.

III. NEURONAL GLOBAL WORKSPACE

This section describes the global workspace that we are de-
veloping to control avatars within the UT2004 environment,
while Section IV covers the implementation of this architec-
ture in spiking neurons. The system currently includes two
behavioural modules for wall-following (III-B) and shooting
(III-C), with the ability to switch between behaviours. We are
also in the process of developing other behavioural modules
(III-D) which will endow the system with the ability to deal
with a larger range of situations.

A. Sensory input and output

The bots operate in a 3D game environment, but instead of
the rich visual interface provided to human players, the bots
access information about the game in a somewhat abstract
form. To begin with the bot has direct access to its location,
direction and velocity, as well as access to the location of
all currently visible items, players and navigation points.
This data is provided in an absolute 3D coordinate frame,
as shown in Figure 2. Second, the spatial structure of the
immediate environment of the bot is available as range-finder
data. The bot can decide where to cast rays, and it gets back
a distance measurement of the point of intersection with a
wall or other object, which enables it to build up a map of its
environment at an appropriate spatial resolution. A third type
of data are the scalars that describe different states of the
avatar, such as crouching, standing, jumping and shooting.
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Fig. 3. Wall-following module

The bot can also access interoceptic data as scalar measures
of overall health, adrenaline and armour.

To use this data within our system it is necessary to convert
the scalar values containing information about the UT2004
environment into patterns of spikes that are fed into the
neural network. To begin with, four pre-processing steps are
applied to the input data. First, information about an enemy
player or other objects is converted into a direction and
distance measurement that is relative to the bot’s location.
Second, information about pain is processed as the rate of
decrease of health plus the number of hit points. Third, the
velocity of the bot is calculated, and finally, a series of
predefined cast rays are converted into a simulated range-
finder sensor. After the above conversions, each piece of
information is transformed into a number in the range 0 to 1
that is multiplied by a weight. The result λ is a mean firing
rate (spikes/millisecond), which is used to deliver spikes
governed by a Poisson distribution with rate λ to the neuron
layers representing the corresponding sensory data.

The avatar is controlled using commands that control
movement, rotation, shooting and jumping. To make the
system easier to control, the bot is treated as a differential
driven robot and the mean firing rates of two layers of
neurons are used to set the speed of two virtual motors. The
location of the next point that the MOVE command will use is
then found using a differential kinematic model. SHOOT and
JUMP commands are sent to the bot if the mean firing rates
of the two corresponding output layers exceeds a threshold.

B. Wall-following module

The wall-following module enables the bot to avoid ob-
stacles and follow walls, and it is based on the Braitenberg
vehicle type 3b [27]. Figure 3 shows the neural architecture
of this module in which the activation layer equally excites

Fig. 4. Spiking within the wall-following module

the two motor layers, while B1 and B2 inhibit them. The B
layers are connected with the two excitatory sensory layers
as well as with two layers that cause mutual inhibition. This
arrangement forms a winner-takes-all mechanism that can
handle situations in which both sensors receive similar inputs.
The layers that represent scalar values, such as sensory-
motor layers, L-, B-, activation and salience layers, consist of
100 neurons each, while the B+ layers contain 400 neurons
each. The activation of these layers during wall-following is
shown in Figure 4. Alternation between the two B+ layers
of neurons indicates changes in direction and the result of
the winner-takes-all mechanism.

When only this module is used the bot wanders through
the environment avoiding walls, as shown in Figure 5. In
typical operation a goal-directed module might control the
avatar, with the wall-following module taking control when
the avatar comes into close proximity with walls or when
there is no strong goal active in the system.

C. Shooting module

The shooting module causes the bot to fire at enemies
when they are nearby. A neuron population vector rep-
resenting the direction of the enemy is extracted from a
sensory part of the global workspace, and it is converted by
the shooting module into a shooting direction as well as a
neuronal activation pattern that represents the salience of this
behaviour. When this pattern gains access to the workspace it
is broadcast back to all of the connected modules and excites
the activation layer. If the mean firing rate of the activation
layer exceeds a threshold, the bot will start shooting in the
selected direction.

D. Other behavioural modules

We are working on the development of other modules
that will contribute to the bot’s behaviour under different
circumstances. These modules will use information in differ-
ent parts of the global workspace to control their activation
and operation, and they will compete to broadcast their
information back to the global workspace. A selection of
planned modules follows.



Fig. 5. Wall-following through the environment. The figure shows a path
the bot takes with only the wall-following module activated.
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a) Chasing: The bot will follow enemies that try to
flee due to falling health. It will activate when the bot’s
own health is good and a close enemy is moving away. The
module will drive the desired direction of movement towards
the fleeing player and maintain firing.

b) Fleeing: The bot has to ensure its own survival,
which in some cases entails fleeing. The fleeing module will
activate when enemy proximity is strong and health is low.
When active, it will drive the facing and movement directions
to move the bot away from the source of immediate danger.

c) Recuperating: To ensure its survival the bot must
replenish its health after receiving damage. The recuperating
module will activate when health is low and the location of
health vials is known. When active, this module will drive
the direction of movement towards observed health vials.
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Fig. 7. Encoding of spatial data using an egocentric one-dimensional
population code. A vector of neurons represent a range of spatial directions
with respect to the current direction of view. The figure shows how firing
activity in a neuron population could encode the presence of a wall to the
left, where firing activity is inversely proportional to distance.

E. Global workspace

The global workspace facilitates cooperation and competi-
tion between the behavioural modules and ensures that only
a single module controls the motor output at any point in
time. Based on the workspace model in [20] the architecture
consists of four layers of neurons linked with topographic
excitatory connections (to preserve the patterns of activation)
and diffuse inhibitory connections. The information in each
layer is identical and the four layers are used as a kind
of working memory that enables information to reverberate
while the sensory and behavioural modules compete to
broadcast their information. The layers in the workspace
are divided into areas representing four different types of
globally broadcast information: 1) desired bodily state; 2)
proprioceptive data, i.e. the actual body movements; 3)
exteroceptive data, i.e. the state of the observable part of
the environment; and 4) interoceptive date, i.e. the internal
state of the bot (Figure 8).

Each datum in the workspace is represented by a popula-
tion of neurons. Data representing locations in the bot’s envi-
ronment are represented using an egocentric one-dimensional
neuron population vector in which each neuron represents a
direction in a 360◦ view around the bot, with the directions
expressed relative to the current view direction, and the
salience indicated by the firing rate. For example, Figure 7
shows a possibly encoding for wall proximity for a bot with
a wall on its left side. Other workspace data represent scalar
values (for example, whether firing is taking place or the
current health level) using a rate code, in which the overall
activity of a neuron encodes the value.

IV. IMPLEMENTATION

The current implementation is a working bot that interfaces
with the UT2004 game environment and implements the
wall-following and shooting behaviours using spiking neural
networks run on the NeMo simulator. The system is capable
of moving around the environment and shooting players that
are in close proximity. An overview of the system is given
in Figure 9.

A. Neuronal populations

The neuronal modules are implemented using a simulated
neural substrate consisting of Izhikevich model neurons [28].
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This phenomenological neuron model accurately reproduces
the spiking response of neurons without modelling the ionic
flows in detail. It is also computationally cheap and suitable
for large-scale network implementations [29], [30].

The Izhikevich model consists of a two-dimensional sys-
tem of ordinary differential equations defined by

v̇ = 0.04v2 + 5v + 140− u+ I (1)
u̇ = a(bv − u) (2)

with an after-spike resetting

if v ≥ 30 mV, then

{
v ← c

u← u+ d

where v represents the membrane potential and u the
membrane recovery variable, which provides post-potential
negative feedback to v. The parameter a describes the time
scale of the recovery variable, b describes its sensitivity to
sub-threshold fluctuations, c gives the after-spike reset value
of the membrane potential, and d describes the after-spike
reset of the recovery variable.

The neurons in the network communicate by means of
spikes, which are discrete signals generated when a neuron
fires. The dynamics of synaptic transmission can be modelled
with various levels of biological fidelity, which can account
for the time-varying effect of a spike on the postsynaptic
neuron and for dynamic variations in the synaptic efficacy.
In this work we use synapses with a static synaptic weight
and with spikes modelled as Dirac pulses. The term I
in Equation 1 represents the combined current from spike
arrivals from all presynaptic neurons, which are summed
every simulation cycle.

The neuron model parameters (a–d) can be set to re-
produce the behaviour of different types of neurons, which
vary in terms of their response characteristics. We use two
primary types of neurons, excitatory and inhibitory, which

have some correspondence with biological neuron types.
The firing of excitatory neurons tends to excite postsynaptic
neurons, i.e. make them more likely to fire. The firing of
inhibitory neurons tends to inhibit postsynaptic neurons, i.e.
make them less likely to fire. Excitation and inhibition is
modelled by positive and negative connection weights, and
the excitatory and inhibitory neurons have different response
characteristics. Functionally, the excitatory neurons in our
networks represent the percepts in the global workspace and
the modules feeding into it. Inhibitory neurons implement
winner-takes-all mechanisms.

B. Spiking Neural Network Simulation

The neural network in our system is simulated using the
NeMo spiking neural network simulation environment [31]
developed by some of the authors of the current paper. NeMo
is a high-performance simulator which runs parallel simula-
tions on graphics processing units (GPUs). The simulator is
primarily intended for computational neuroscience research,
and general-purpose GPUs are used as the implementation
medium due to the high level of parallelism and very high
memory bandwidth. The use of GPUs makes the simulator
eminently suitable for implementing neurally-based cognitive
game characters in first-person shooters and similar games
since the required parallel hardware is typically already
present on the player’s computer.

The state of the neural network is updated in a discrete-
time simulation with a 1ms time step. The controlling appli-
cation provides input spikes from sensors and converts output
spikes to motor signals at each time step. The simulation
consists of two main phases: neuron state update and spike
delivery. The neuron state update is trivially parallel — a
perfect match for the GPU — whereas the spike delivery
requires communication between different threads. The spike
delivery is therefore the limiting factor for the performance.
On a high-end consumer-grade GPU, NeMo can deliver in
excess of one billion spikes per wall clock second. The
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existing behavioural modules are implemented with less than
2000 neurons with a fairly low level of connectivity, so the
proposed network with a much larger number of modules
should be able to comfortably run in real time.

C. UT2004 interface

Our system uses sockets to communicate with a GameBots
2004 server [32], which interfaces with UT2004 (Figure 9).
In the case of a bot connection, GameBots sends synchronous
and asynchronous messages containing information about the
state of the world, and it receives commands that control the
avatar in its environment. To facilitate this communication we
have created a syntactic analyser that parses the GameBots
messages and updates the attributes of the corresponding
objects that form the system’s representation of the world.
The system then processes the gathered information and
outputs the desired actions. This output is translated into
commands that are transmitted back to the GameBots server.
The time between two complete communication loops is
independent of the time step of the internal neural simulation
which is constant and set to 1 ms.

V. DISCUSSION AND FUTURE WORK

The system described in this paper is currently being
developed for the human-like bot competition at CIG 2011
in September, and a substantial part of our future work
will be the completion and testing of the system. One key
performance criteria will be the system’s ability to compete
effectively within the UT2004 environment, since if it gets
killed immediately, it will have little chance to display
its human-like behaviour. We are also developing ways of
measuring the humanness of an avatar’s behaviour that will
be used to evaluate and improve our bot. A measure of
human-like behaviour can also be directly applied in the
BotPrize competition, which has a prize for the bot that
makes the best judgement about which of the other avatars
is controlled by a human.

The most straightforward measure of behaviour within the
UT2004 environment is the paths that are followed by the
avatars during the course of play. While humans smoothly
navigate around UT2004 using the rich visual interface,
avatars guided by range-finder data are likely to exhibit
erratic movement behaviour and get stuck on walls and
corners. Avatars controlled by bots might also fail to explore
larger areas of the game environment — for example, a wall-
following bot might endlessly circle a block or column. It

is also likely that human players will move towards salient
features of their environment, such as doors, staircases or
objects. To evaluate the degree to which our system exhibits
human-like behaviour we are planning to gather path data
from human players in the UT2004 environment (possibly
log data from competitions) and compile statistics on the
distribution of the distance of avatars from walls and other
obstacles, the degree to which their path intersects with
complex features of the environment, such as doors, stairs
and corners, and the amount of the environment that is
explored. These statistics will be used to evaluate the degree
to which the movement behaviour of a bot is human-like
within the UT2004 environment. It might also be possible
to extend this approach to measure the humanness of more
complex behaviours, such as avoidance or combat.

In the longer term we are planning to extend and fine
tune the sensory and action modules to improve the system’s
human-like behaviour, and we would also like to use this sys-
tem to explore how neural synchronization could implement
a global workspace, along the lines proposed by Shanahan
[21]. In our current system, the broadcast information is the
activation within a population of global workspace neurons;
in the neural synchronization approach the globally broadcast
information is information that is passed within a population
of synchronized neurons. A neural synchronization approach
would open up the possibility of a more biologically realistic
and dynamic definition of the global workspace, and it would
also be possible to connect our work with the extensive
literature on the link between neural synchronization and
consciousness [33].

It is an open question whether spiking neural networks
will prove to be an advantageous or even an adequate
way of producing human-like behaviour within the UT2004
environment. On the one hand, spiking neural networks in
the human brain can solve this problem, and so it appears
to be possible, at least in principle, to build a network that
functions in this way. On the other hand, the networks that
we are currently capable of constructing are many orders of
magnitude smaller than the human brain and we are only just
starting to learn how to engineer spiking neural networks —
it may take many years before this approach can produce
the behavioural complexity of even the simplest animals. In
the longer term, the spiking neural network approach has
the advantage that it can both take inspiration from the brain
and help us to understand the brain; in the shorter term the
advantages and disadvantages of this approach will become
apparent when our system competes against bots based on
other principles in September.

VI. CONCLUSIONS

This paper has described a system that we are developing
to display human-like behaviour within the UT2004 envi-
ronment. The system uses a global workspace architecture
implemented in spiking neurons to control the avatar, and
the neural network that we have developed is already capable
of navigating through the UT2004 environment and shooting



opponents. We are currently part way through the implemen-
tation and testing of the global workspace, which will provide
integration and coordination between the different sensory
and motor modules, and we have plans to implement further
sensory and behavioural modules before the human-like bot
competition at CIG 2011 in September.
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